lunes, 9 de agosto de 2010

representantes de la fisica





HISTORIA DE LA FÍSICA

La Historia de la Física está llena de grandes científicos como Galileo, Newton o Einstein, cuyas contribuciones han sido decisivas, pero también de un número muy grande de científicos cuyos nombres no aparecen en los libros de texto. No existe el genio aislado al que de repente se le ocurre la idea clave que cambia el curso de la Ciencia. El avance en el progreso científico no se produce solamente por las contribuciones aisladas y discontinuas de unas mentes privilegiadas.





Hay partidarios del uso de la historia en la enseñanza de la Física por varias razones:

a) Apreciar el estado actual de nuestro conocimiento científico en comparación con épocas previas.

b) Como hechos que debemos conocer para incrementar nuestra cultura.

c) Posibilidad de adquirir una visión actual y rigurosa de la evolución de nuestra imagen del mundo físico, que está en no pocas ocasiones en contradicción con la imagen simplificada que nos han contado, o que presentan algunos libros de texto.

d) Motivar a estudiantes interesados en aspectos filosóficos y sociales de la ciencia.



*

La física (griego φύσισ (phisis), «naturaleza») actualmente se entiende como la ciencia de la naturaleza o fenómenos materiales. Estudia las propiedades de la materia, la energía, el tiempo, el espacio y sus interacciones (fuerza). Los sistemas físicos se caracterizan por:

*

Tener una ubicación en el espacio-tiempo.
*

Tener un estado físico definido sujeto a evolución temporal.
*

Poderle asociar una magnitud física llamada energía.

La física estudia por lo tanto un amplio rango de campos y fenómenos naturales, desde las partículas subatómicas hasta la formación y evolución del Universo así como multitud de fenómenos naturales cotidianos, caracterizados por cierta geometría o topología y cierta evolución temporal y cuantificados mediante magnitudes físicas como la energía.



*
Dentro del campo de estudio de la Física Clásica se encuentran:

o

Mecánica

*

Termodinámica

*

Mecánica Ondulatoria

*

Óptica

*

Electromagnetismo: Electricidad | Magnetismo



*
Dentro del campo de estudio de la Física Moderna se encuentran:

o

Relatividad

o

Mecánica cuántica: Átomo | Núcleo | Física Química | Física del estado sólido

o

Física de partículas

o

Gravitación



*
Dentro del campo de estudio de la Física Contemporánea se encuentran:

o

Termodinámica fuera del equilibrio: Mecánica estadística |Percolación

o

Dinámica no lineal: Turbulencia| Teoría del Caos | Fractales

o

Sistemas complejos: Sociofísica | Econofísica | Criticalidad autorganizada| Redes Complejas

o

Física mesoscópica: Puntos cuánticos

o

Nano-Física: Pinzas ópticas

Fisica Cuantica
Cargado por yofre_lopez. - Descubre más vídeos de ecología y sociedad.
Teoría Cuántica

La física cuántica, también conocida como mecánica ondulatoria, es la rama de la física que estudia el comportamiento de la materia cuando las dimensiones de ésta son tan pequeñas, en torno a 1.000 átomos, que empiezan a notarse efectos como la imposibilidad de conocer con exactitud la posición de una partícula, o su energía, o conocer simultáneamente su posición y velocidad, sin afectar a la propia partícula (descrito según el principio de incertidumbre de Heisenberg).

Surgió a lo largo de la primera mitad del siglo XX en respuesta a los problemas que no podían ser resueltos por medio de la física clásica.

Los dos pilares de esta teoría son:

• Las partículas intercambian energía en múltiplos enteros de una cantidad mínima posible, denominado quantum (cuanto) de energía.
• La posición de las partículas viene definida por una función que describe la probabilidad de que dicha partícula se halle en tal posición en ese instante

Ratificación Experimental

El hecho de que la energía se intercambie de forma discreta se puso de relieve por hechos experimentales, inexplicables con las herramientas de la mecánica clásica, como los siguientes:

Según la Física Clásica, la energía radiada por un cuerpo negro, objeto que absorbe toda la energía que incide sobre él, era infinita, lo que era un desastre. Esto lo resolvió Max Plank mediante la cuantización de la energía, es decir, el cuerpo negro tomaba valores discretos de energía cuyos paquetes mínimos denominó “quantum”. Este cálculo era, además, consistente con la ley de Wien (que es un resultado de la termodinámica, y por ello independiente de los detalles del modelo empleado). Según esta última ley, todo cuerpo negro irradia con una longitud de onda (energía) que depende de su temperatura.

La dualidad onda corpúsculo, también llamada onda partícula, resolvió una aparente paradoja, demostrando que la luz y la materia pueden, a la vez, poseer propiedades de partícula y propiedades ondulatorias. Actualmente se considera que la dualidad onda - partícula es un "concepto de la mecánica cuántica según el cual no hay diferencias fundamentales entre partículas y ondas: las partículas pueden comportarse como ondas y viceversa".



El tamaño medio de un átomo es de una diez millonésima de milímetro, es decir, un millón de átomos situados en fila constituirían el grosor de un cabello humano …

Aplicaciones de la Teoría Cuántica

El marco de aplicación de la Teoría Cuántica se limita, casi exclusivamente, a los niveles atómico, subatómico y nuclear, donde resulta totalmente imprescindible. Pero también lo es en otros ámbitos, como la electrónica (en el diseño de transistores, microprocesadores y todo tipo de componentes electrónicos), en la física de nuevos materiales, (semiconductores y superconductores), en la física de altas energías, en el diseño de instrumentación médica (láseres, tomógrafos, etc.), en la criptografía y la computación cuánticas, y en la Cosmología teórica del Universo temprano.

Un nuevo concepto de información, basado en la naturaleza cuántica de las partículas elementales, abre posibilidades inéditas al procesamiento de datos. La nueva unidad de información es el qubit (quantum bit), que representa la superposición de 1 y 0, una cualidad imposible en el universo clásico que impulsa una criptografía indescifrable, detectando, a su vez, sin esfuerzo, la presencia de terceros que intentaran adentrarse en el sistema de transmisión. La otra gran aplicación de este nuevo tipo de información se concreta en la posibilidad de construir un ordenador cuántico, que necesita de una tecnología más avanzada que la criptografía, en la que ya se trabaja, por lo que su desarrollo se prevé para un futuro más lejano.

La teleportación de hombres, aunque en un futuro lejano, es una de las aplicaciones más atractivas de la mecánica cuántica…

En la medicina, la teoría cuántica es utilizada en campos tan diversos como la cirugía láser, o la exploración radiológica. En el primero, son utilizados los sistemas láser, que aprovechan la cuantificanción energética de los orbitales nucleares para producir luz monocromática, entre otras característcias. En el segundo, la resonancia magnética nuclear permite visualizar la forma de de algunos tejidos al ser dirigidos los electrones de algunas sustancias corporales hacia la fuente del campo magnético en la que se ha introducido al paciente.

Otra de las aplicaciones de la mecánica cuántica es la que tiene que ver con su propiedad inherente de la probabilidad. La Teoría Cuántica nos habla de la probabilidad de que un suceso dado acontezca en un momento determinado, no de cuándo ocurrirá ciertamente el suceso en cuestión.

Cualquier suceso, por muy irreal que parezca, posee una probabilidad de que suceda, como el hecho de que al lanzar una pelota contra una pared ésta pueda traspasarla. Aunque la probabilidad de que esto sucediese sería infinitamente pequeña, podría ocurrir perfectamente.

La teleportación de los estados cuánticos (qubits) es una de las aplicaciones más innovadoras de la probabilidad cuántica, si bien parecen existir limitaciones importantes a lo que se puede conseguir en principio con dichas técnicas. En 2001, un equipo suizo logró teleportar un fotón una distancia de 2 km, posteriormente, uno austriaco logró hacerlo con un rayo de luz (conjunto de fotones) a una distancia de 600 m., y lo último ha sido teleportar un átomo, que ya posee masa, a 5 micras de distancia